Efficient Architecture for Proposed VLIW for High Performance in SBST Technology
نویسندگان
چکیده
----------------------------------------------------------------ABSTRACT----------------------------------------------------A promising approach for processors and processor-based systems (e.g., systems on a chip, or SoCs) corresponds to the so-called software-based self-test (SBST) the basic idea is to generate test programs to be executed by the processor and able to fully exercise the processor itself or other components in the system, and to detect possible faults by looking at the produced results. One of the main advantages of SBST lies in the fact that it does not require any extra hardware; therefore, the test cost is reduced and any performance or area penalty is avoided. To provide high performances with reduced clock rate and power consumption. At the same time, there is an increasing request for efficient and optimal test techniques able to detect permanent faults in VLIW processors. Software based self-test (SBST) methods are a consolidated and effective solution to detect faults in a processor both at the end of the production phase or during the operational life; however, when traditional SBST techniques are applied to VLIW processors, they may prove to be ineffective (especially in terms of size and duration), due to their inability to exploit the parallelism intrinsic in these architectures.
منابع مشابه
On the Automatic Generation of Software-Based Self-Test Programs for Functional Test and Diagnosis of VLIW Processors
Software-Based Self-Test (SBST) approaches have shown to be an effective solution to detect permanent faults, both at the end of the production process, and during the operational phase. However, when Very Long Instruction Word (VLIW) processors are addressed these techniques require some optimization steps in order to properly exploit the parallelism intrinsic in these architectures. In this c...
متن کاملDesign of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems
Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کاملHigh Speed Delay-Locked Loop for Multiple Clock Phase Generation
In this paper, a high speed delay-locked loop (DLL) architecture ispresented which can be employed in high frequency applications. In order to design the new architecture, a new mixed structure is presented for phase detector (PD) and charge pump (CP) which canbe triggered by double edges of the input signals. In addition, the blind zone is removed due to the elimination of reset signal. Theref...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015